(s, 1, 2-H), 7.61 (d, 1, $J_{4,5}$ = 9.6 Hz, 4-H); IR 2110 (N₃) cm⁻¹; UV (95% ethanol) λ_{max} 214 nm (log ϵ 4.31), 247 (4.34), 289 (3.99); UV (0.1 N HCl) λ_{max} 210 nm (log ϵ 4.30), 244 (4.34), 285 (3.99); UV (pH 7.0 buffer) λ_{max} 210 nm (log ϵ 4.28), 242 (4.35), 287 (4.00); UV (0.1 N NaOH) λ_{max} 220 nm (log ϵ 4.12), 245 (4.29), 289 (3.92); FDMS, m/e 245 (M⁺).

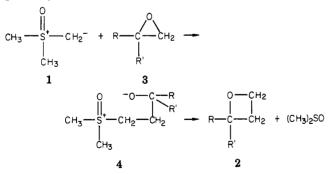
Anal. Calcd for $C_{11}H_{11}N_5O_2$: C, 53.87; H, 4.52; N, 28.56. Found: C, 53.70; H, 4.57; N, 28.40.

Acknowledgment. This work was supported by National Science Foundation Research Grants CHE 76-23543, CHE 79-22001, and CHE 81-21796. We thank Dr. William H. Pirkle, University of Illinois, for the use of the Autopol III automatic polarimeter.

Registry No. 1, 606-20-2; 2, 79476-53-2; 3, 87586-68-3; 4a, 5192-23-4; 4b, 5192-03-0; 4c, 5318-27-4; 4d, 2462-30-8; 5a, 81524-73-4; 5b, 81524-74-5; 5c, 81524-75-6; 5d, 81524-70-1; 6, 19727-83-4; 7a. 4769-96-4; 7b, 46885-76-1; 8, 73-22-3; (CH₃)₂NC-H(OCH₃)₂, 4637-24-5; NH₂NHCONH₂·HCl, 563-41-7.

Reaction of Dimethyloxosulfonium Methylide with Epoxides. Preparation of Oxetanes

Kentaro Okuma,* Yoshihiko Tanaka, Shinji Kaji, and Hiroshi Ohta


Department of Chemistry, Fukuoka University, Jonan-ku, Fukuoka 814-01, Japan

Received May 24, 1983

Methods for the preparation of oxetanes include the cyclization of 1,3-halohydrins with alkali, the light-catalyzed 1,2-cycloaddition of olefins and carbonyl compounds,¹ the thermal decomposition of tributyltin derivatives,² and the reaction of sulfoximide anion with carbonyl compounds.³ The analogous azetidines have been prepared by reaction of dimethyloxosulfonium methylide with aziridines.⁴ We now report on a convenient synthesis of oxetanes by reaction of dimethyloxosulfonium methylide (1) with epoxides and with carbonyl compounds.

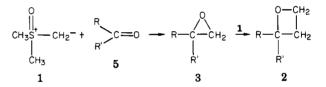
Results and Disscussion

The ylide 1 is an efficient methylene-transfer reagent in reactions with epoxides 3a-e, affording the corresponding oxetanes 3a-e in yields of 83-97% on standing at 50 °C for 3 days (Table I). We propose the following pathway for the reaction:

(1) Deric, C. G.; Bissel, D. W. J. Am. Chem. Soc. 1916, 38, 2478. Paterno, F.; Chiffii, G. Gazz. Chim. Ital. 1909, 39, 341. Büchi, G.; Inman, C. G.; Lipinsky, E. S. J. Am. Chem. Soc. 1954, 76, 4327. Maier has tabulated the preparations of more than 200 oxetane derivatives: Methoden Org. Chem. (Houben-Weyl) 1975, IV 5b 838-876. (2) Biggs, J. Tetrahedron Lett. 1975, 4285.

 Welch, S. C.; Praska Rao, A. S. C. J. Am. Chem. Soc. 1979, 101, 6135. Welch, S. C.; Praska Rao, A. S. C.; Lyon, J. T.; Assercq, J.-M. Ibid. 1983, 105, 252.

(4) Nadir, U. K.; Koul, V. K. J. Chem. Soc., Chem. Commun. 1981, 417.


Table I. Preparation of Oxetanes from Epoxides

			$\begin{array}{c} O - CH_2 \\ R \\ C - CH_2 \\ R' \end{array}$		
compd	R	R'	compd	yield, ^a %	yield, ^b %
3a 3b 3c 3d 3e	H C ₆ H ₅ H CH ₃ cyclo	$C_{6}H_{5}$ $C_{6}H_{5}$ $p-ClC_{6}H_{4}$ $C_{6}H_{5}$ bhexanone	2a 2b 2c 2d 2e	65 55° 23° 24° 81	94 99 88 85 83

^a 10 mol % excess ylide; reflux 4 h. ^b 100 mol % excess ylide; 50 °C, 3 days. ^c Unreacted epoxide recovered in yields of 25%, 45%, and 50%, respectively.

The reaction of epoxides with 1 differs from those reported with related reagents. Thus, anions of N-(ptolylsulfonyl)sulfoximines are nucleophilic alkylidene transfer reagents in reactions with ketones, imines, and α , β -unsaturated ketones, affording epoxides, aziridines, and cyclopropanes, respectively.⁵ However, reaction of this anion with epoxides yields only the corresponding γ -hydroxy sulfoximines. Likewise, reaction of epoxides with α -lithio tert-butyl sulfoxide gives γ -hydroxy sulfoxides.⁶

Since oxosulfonium ylides are practical reagents for the synthesis of epoxides from carbonyl compounds, we explored the reaction of 2 equiv of 1 with carbonyl compounds. As shown in Table II, oxetanes 2 were obtained in 80-97% yields by carrying out the reaction at 50 °C for 3 days.

The reported synthesis of oxetanes by reaction of N-(P-tolylsulfonyl)sulfoximide anion with carbonyl compounds is quite sensitive to temperature.³ For example, oxetane 2i was obtained in 69% yield at a reaction temperature of 40 ± 2 °C. However, at a reaction temperature of 45 ± 2 °C, 2-(4-tert-butylcyclohexenyl)ethanol was formed as a byproduct in 17% yield. The reaction with 1 does not require such rigidly controlled reaction conditions; reaction with benzophenone gave 2b in yields of 97% (50 °C, 3 days) or 88% (reflux, 1 day).

The use of dimethyloxosulfonium methylide as a nucleophilic methylene-transfer reagent to epoxides has advantages over most known oxetane synthesis methods: the reaction conditions are mild and convenient; yields of the products are much higher than those reported by the procedures of Deric (40%),¹ Biggs (20-40%),² and Welch $(46-96\%).^3$

Experimental Section

The aldehydes and ketones used as starting materials were reagent grade (>95% pure) and were used as received unless otherwise specified. Epoxides were prepared by the reaction of dimethylsulfonium methylide with carbonyl compounds.^{7,8} ¹H

(7) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353.

⁽⁵⁾ Johnson, C. R.; Kirchhoff, R. A.; Reisher, R. J.; Katetar, G. F. J. Am. Chem. Soc. 1973, 95, 4287

⁽⁶⁾ Sharma, N. K.; de Reinach-Hirtzbach, F.; Durst, T. Can. J. Chem. 1976, 54, 3012.

Table II. Preparation of Oxetanes from Carbonyl Compounds^a

			$\begin{array}{c} OH \longrightarrow CH_2 \\ & \\ R \longrightarrow C \longrightarrow CH_2 \\ \\ R' \\ R' \end{array}$		
compd	R	R'	compd	yield, %	bp, °C (mmHg)
	Н	C ₆ H ₅	2a	93	37-38 (0.016)
5b	C.H.	C, H,	2b	97	111-115 (0.013)
5c	C ₆ H₅ H	C ₆ H ₅ p-ClC ₆ H ₄	2c	90	60-64 (Ò.018)
5d	CH_3	C,H,	2d	90	31-35 (0.009)
5e	cyclohexanone		2e	88	31-33 (0.013)
5f	н	$p-CH_3C_6H_4$	2f	80	44-47 (0.007)
5g	$\overline{C}_{2}H_{5}$	C, H,	2g	96	44 - 48(0.022)
5h	4-methylcyclohexanone		2h	80	24-26 (0.072)
5i		yl cyclohexanone	2 i	87	63-65 (0.040)

^a Reactions carried out at 50 °C for 3 days.

NMR spectra were measured with a JEOL PMX-60 spectrometer or a JEOL FX-200 spectrometer. Mass spectra were recorded of a JEOL DX-300 mass spectrometer.

Methylene-Transfer Reaction. Oxetane 2a from Epoxide 3a. To a solution of 4.40 g (20 mmol) of trimethyloxosulfonium iodide in 40 mL of t-BuOH was added a solution of 2.24 g (20 mmol) of t-BuOK in 25 mL of t-BuOH at 50 °C. After 30 min of stirring, 1.20 g (10 mmol) of 3a (freshly distilled) in 20 mL of t-BuOH was added dropwise to this solution. After 3 days of stirring, the resulting suspension was evaporated, washed with water, and extracted three times with n-hexane. The combined extract was dried over MgSO4 and evaporated to give oxetane 2a (1.26 g, 9.4 mmol) in 94% yield. Without further purification, resulting 2a was spectroscopically pure: ¹H NMR (CDCl₃) δ 2.33-3.43 (m, 2 H), 4.20-5.20 (m, 2 H), 5.73 (t, 1 H, J = 7.2 Hz), 7.30 (s, 5 H); HRMS, m/e 134.0731 (C₉H₁₀O requires 134.0721).

2b-e were prepared in a similar manner from 10 mmol of epoxide; yields are shown in Table I. 2b: mp 41-43 °C; ¹H NMR $(CDCl_3) \delta 3.17$ (t, 2 H, J = 8.0 Hz), 4.63 (t, 2 H, J = 8.0 Hz), 7.07-7.63 (m, 10 H); HRMS, m/e 210.1044 (C₁₅H₁₄O requires 210.1045). Anal. Calcd for C₁₅H₁₄O: C, 85.71; H, 6.67. Found: C, 85.73; H, 6.61. 2c: ¹H NMR (CDCl₃) δ 2.33–3.23 (m, 2 H), 4.40–5.06 (m, 2 H), 5.70 (t, 1 H, J = 8.0 Hz), 7.07–7.63 (m, 10 H); HRMS, m/e 168.0342, 170.0312 (C₉H₉OCl requires 168.0342, 170.0312). 2d: ¹H NMR (CDCl₃) δ 1.73 (s, 3 H), 2.75 (t, 2 H, J = 7.8 Hz), 4.55 (dt, 2 H, J = 1.8, 8.0 Hz), 7.35 (s, 5 H); HRMS, m/e 148.0888 (C₁₀H₁₂O requires 148.0888). 2e: ¹H NMR δ 1.0–2.0 (m, 10 H), 2.27 (t, $\overline{2}$ H, \overline{J} = 7.8 Hz), 4.43 (t, 2 H, J = 7.8 Hz); HRMS, m/e 124.1043 (C₈H₁₄O requires 126.1045).

Double Methylene-Transfer Reaction. Oxetane 2b from 5b. To a solution of 8.80 g (40 mmol) of trimethyloxosulfonium idodide in 80 mL of t-BuOH was added a solution of 4.48 g (40 mmol) of t-BuOK in 50 mL of t-BuOH at 50 °C. After 30 min of stirring, 1.82 g (10 mmol) of benzophenone (5b) in 20 mL of t-BuOH was added dropwise. After 3 days of stirring, the resulting suspension was evaporated, washed with water, and extracted three times with n-hexane. The combined extract was dried over MgSO₄ and evaporated to give oxetane 2b (2.04 g, 9.7 mmol) in 97% yield. Without further purification, 2b was spectroscopically pure: mp 41-43 °C.

2a,c-i were prepared in a similar manner from 10 mmol of ketone; yields are shown in Table II 2f: ¹H NMR (CDCl₃) δ 2.32 (s, 3 H), 2.40-3.33 (m, 2 H), 4.37-4.93 (m, 2 H), 5.72 (t, 1 H, J = 7.8 Hz), 7.17 (s, 4 H); HRMS, m/e 148.0888 (C₁₀H₁₂O requires 148.0888). 2g: ¹H NMR (CDCl₃) δ 0.82 (t, 3 H, J = 7.3 Hz), 1.63-2.23 (m, 2 H), 2.73 (dt, 2 H, J = 3, 8 Hz), 4.52 (t, 2 H, J = 3, 8 7.7 Hz), 7.28 (s, 5 H); HRMS, m/e 162.1045 (C₁₁H₁₄O requires 162.1045). 2h: ¹H NMR (CDCl₃) δ 0.57-2.03 (m, 11 H), 1.80-2.53 (m, 1 H), 2.28 (t, 2 H, J = 7.8 Hz), 4.43 (t, 2 H, J = 7.8 Hz); HRMS,m/e 140.1183 (C₉H₁₆O requires 140.1201). 2i: ¹H NMR (CDCl₃) δ 0.85 (s, 9 H), 1.00-1.83 (m, 8 H), 2.00-2.40 (m, 1 H), 2.28 (t, 2

(8) Kutsuma, T.; Nagayama, I.; Okazaki, T.; Sakamoto, T.; Sanya, S. Heterocycles 1977, 8, 397.

H, J = 8.0 Hz), 4.42 (t, 2 H, J = 8.0 Hz); HRMS, m/e 182.1691 $(C_{12}H_{22}O \text{ requires } 182.1671).$

Acknowledgment. This work was partly supported by a grant from the Central Research Institute of Fukuoka University. We are grateful to Dr. H. Kikuchi and Y. Matsuzaki at Tsumura Research Institute of Pharmacology for the high-resolution mass spectroscopic analysis.

Registry No. 1, 5367-24-8; 2a, 4436-23-1; 2b, 884-73-1; 2c, 17492-23-8; 2d, 19352-10-4; 2e, 185-18-2; 2f, 5583-71-1; 2g, 87597-07-7; 2h, 87597-08-8; 2i, 87597-09-9; 3a, 96-09-3; 3b, 882-59-7; 3c, 2788-86-5; 3d, 2085-88-3; 3e, 185-70-6; 5a, 100-52-7; 5b, 119-61-9; 5c, 104-88-1; 5d, 98-86-2; 5e, 108-94-1; 5f, 104-87-0; 5g, 93-55-0; 5h, 589-92-4; 5i, 98-53-3.

Synthesis of a Conjugated Nitrile from a Benzylic Ketone via a Cyanotrimethylsilane Adduct: 3,4-Dihydro-6-methoxynaphthalene-1-carbonitrile

Stephen A. Jacobs and Ronald G. Harvey*

Ben May Laboratory, University of Chicago, Chicago, Illinois 60637

Received June 10, 1983

6-Methoxynaphthalene-1-carbonitrile (4) and its 3,4dihydro derivative 3 are useful intermediates for the synthesis of steroids and the oxidized metabolites of carcinogenic hydrocarbons.¹⁻⁴ The fully aromatic nitrile 4 is commonly prepared from 6-methoxy-1-aminonaphthalene via diazotization and the Sandmeyer reaction.¹ However, preparation of the starting compound entails a multistep synthesis and affords relatively poor overall yields. The 3,4-dihydro compound 3 is presently available through addition of diethylaluminum cyanide to 6-methoxy-1tetralone followed by dehydration.⁵ Since diethylaluminum cyanide is a relatively expensive and hazardous reagent, and large solvent volumes are required, this method is impractical for larger scale preparations.

We now report a convenient one-pot synthesis of 3 from 6-methoxytetralone (1) and dehydrogenation of 3 directly to 4 (Scheme I). Boron trifluoride-catalyzed addition of cyanotrimethylsilane⁶ to 1 yields the adduct 2 which on

⁽¹⁾ Butenandt, A.; Schramm, G. Chem. Ber. 1935, 68, 2083.

Long, L., Jr.; Burger, A. J. Org. Chem. 1941, 6, 852.
 Amin, S.; Hecht, S. S.; Hoffmann, D. J. Org. Chem. 1981, 46, 2394.

Jacobs, S. A.; Harvey, R. G. Carcinogenesis 1983, 4, 519 (5) Nagata, W.; Yoshioka, M.; Murakami, M. Org. Synth. 1972, 52, 96.